Landforms

The Korean Peninsula is bordered by water on three sides. In contrast to its smooth eastern coastline, its northern and western coasts are extremely complex. The peninsula has relatively long coasts for its size. According to a 2014 survey, the total coastline of the mainland is 7,723 km, while the coasts of Korea’s associated islands constitute 7,210 km. Artificial coasts resulting from coastal development and port construction have reached 5,000 km. One of the most significant geographic characteristics of the Korean Peninsula is its prominent NE-SW-oriented mountain ranges. These mountain ranges resulted from the formation of a back-arc basin on the edge of the Asian continent, a process that also produced the Hamgyeongsanmaek (Hamgyeong Mountain Range) and the Bukheumsanmaek (Bukhang Mountains) on the eastern Korean Peninsula. One of the most significant geographic characteristics of the Korean Peninsula is its prominent NE-SW-oriented mountain ranges. These mountain ranges resulted from the formation of a back-arc basin on the edge of the Asian continent, a process that also produced the Hamgyeongsanmaek (Hamgyeong Mountain Range) and the Bukheumsanmaek (Bukhang Mountains) on the eastern Korean Peninsula.

The average elevation of the Korean Peninsula is approximately 480 m above sea level, which is notably lower than that of East Asia (690 m). The mean slope of the peninsula is 5.7 °, which is two degrees steeper than that of East Asia (3.9 °). Overall, while the peninsula has a lower elevation than that of East Asia, it has a significant spread of steep mountainous regions. 77.4% of South Korea is covered in mountainous areas that are less than 400 m in elevation. High mountains are asymmetrically located to the east and south of the peninsula, following the patterns of Taebaeksanmaek, Nangrimsanmaek, and Taeheumsanmaek. The last two ranges are the highest elevations. Bukheumsan, Kunamnong, Bukhan, and Hengyangsongmaek are all peaks that stand over 2000 m. On the western side, Taebaeksanmaek ranges reach over 1200 m from Yongbong Peak in North Korea to Binsan in South Korea. Most large rivers flow south toward the southern part of the peninsula, most large rivers flow south toward the southern part of the peninsula. The average elevation of the Korean Peninsula is approximately 480 m above sea level, which is notably lower than that of East Asia (690 m). The mean slope of the peninsula is 5.7 °, which is two degrees steeper than that of East Asia (3.9 °). Overall, while the peninsula has a lower elevation than that of East Asia, it has a significant spread of steep mountainous regions. 77.4% of South Korea is covered in mountainous areas that are less than 400 m in elevation. High mountains are asymmetrically located to the east and south of the peninsula, following the patterns of Taebaeksanmaek, Nangrimsanmaek, and Taeheumsanmaek. The last two ranges are the highest elevations. Bukheumsan, Kunamnong, Bukhan, and Hengyangsongmaek are all peaks that stand over 2000 m. On the western side, Taebaeksanmaek ranges reach over 1200 m from Yongbong Peak in North Korea to Binsan in South Korea. Most large rivers flow south toward the southern part of the peninsula. The average elevation of the Korean Peninsula is approximately 480 m above sea level, which is notably lower than that of East Asia (690 m). The mean slope of the peninsula is 5.7 °, which is two degrees steeper than that of East Asia (3.9 °). The average elevation of the Korean Peninsula is approximately 480 m above sea level, which is notably lower than that of East Asia (690 m). The mean slope of the peninsula is 5.7 °, which is two degrees steeper than that of East Asia (3.9 °). Overall, while the peninsula has a lower elevation than that of East Asia, it has a significant spread of steep mountainous regions. 77.4% of South Korea is covered in mountainous areas that are less than 400 m in elevation. High mountains are asymmetrically located to the east and south of the peninsula, following the patterns of Taebaeksanmaek, Nangrimsanmaek, and Taeheumsanmaek. The last two ranges are the highest elevations. Bukheumsan, Kunamnong, Bukhan, and Hengyangsongmaek are all peaks that stand over 2000 m. On the western side, Taebaeksanmaek ranges reach over 1200 m from Yongbong Peak in North Korea to Binsan in South Korea. Most large rivers flow south toward the southern part of the peninsula. The average elevation of the Korean Peninsula is approximately 480 m above sea level, which is notably lower than that of East Asia (690 m). The mean slope of the peninsula is 5.7 °, which is two degrees steeper than that of East Asia (3.9 °). Overall, while the peninsula has a lower elevation than that of East Asia, it has a significant spread of steep mountainous regions. 77.4% of South Korea is covered in mountainous areas that are less than 400 m in elevation. High mountains are asymmetrically located to the east and south of the peninsula, following the patterns of Taebaeksanmaek, Nangrimsanmaek, and Taeheumsanmaek. The last two ranges are the highest elevations. Bukheumsan, Kunamnong, Bukhan, and Hengyangsongmaek are all peaks that stand over 2000 m. On the western side, Taebaeksanmaek ranges reach over 1200 m from Yongbong Peak in North Korea to Binsan in South Korea. Most large rivers flow south toward the southern part of the peninsula.
According to the Landform Classification, 75.7% of the Korean Peninsula comprises of low-level mountainous areas (26.3%), medium-level mountainous areas (19.5%), and high-level mountainous areas (10.7%). The Landform Diversity Index – the number of different landform units within 100 km² – for Korea displays an average of 2.78 with a standard deviation of 0.95. Compared to East Asia, which has an average of 2.27 with a standard deviation of 1.64, Korean landforms exhibit higher overall diversity, but have less variation within certain areas.

When considering the topography of the Korean Peninsula, the Sikhote-Alin mountain range, Southern China, south of the Yangtze River, and Japan, the average elevation in descending order is as follows: Sikhote-Alin (587 m), the Korean Peninsula (464.5 m), Japan (309.6 m), and Southern China (312.8 m). However, the average slope of each area shows a different order: Korea (7.7°) has the highest average slope, followed by Japan (6.3°), Sikhote-Alin (5.5°), and Southern China (4.5°). Landform diversity has yet another order, with Southern China (13%) showing the highest value, followed by Japan (23%), Korea (24%), and Sikhote-Alin (2%).

Overall, the Korean Peninsula has high average elevation and average slope, but has the least change in slope among the East Asian areas. While Korea has more low-level mountainous areas, Japan and Southern China display a larger percentage of low-relief lands and medium-level mountainous areas. This indicates that abrupt changes in slope are less common in Korea, which makes it more suitable for most Korean localities, which are rather mellow. This phenomenon is re-enforced by slow tectonic movement and relatively small geological structure of the continent. The peninsula also has collectively steep mountainous areas and large landform features, even though it does not have high elevations. Another characteristic of Korean topography is that the boundaries between mountainous areas and medium-level mountains are rather unclear. This phenomenon is also explainable by the mellow landform structure and relatively small landform diversity.

According to the Landform Classification, the Korean Peninsula (507.0 m), the Korean Peninsula (312.8 m), Japan (390.9 m), and Southern China (283.7 m) are considered as high, medium, and low relief, respectively. The Korean Peninsula displays the highest altitude and range of altitudes, while the Japanese Peninsula and Southern China show a lower gradient, with the Korean Peninsula being between the two. The average elevation of the mountain is not equally attributed to all areas; regions exceeding 1,500 m in height can be found near the Buyeo-Hoham-Gumdam region of North Korea, accompanied by some of the highest peaks of Taebaeksan and Taebaeksan. As for area distribution according to slope, 50% of the land has lower gradients than 18°, 44% are between 18 and 37°, 20% are between 37 and 45°, and 6% has more than 45° inclination. The majority of the gentle slope areas correspond to coastal regions. The average, slope is proportional to altitude – the higher the altitude, the steeper the slope. However, the widely distributed low plateaus of the Buyeo-Gumi-Gumdam region of North Korea, introduced by the high elevation of the mountain, is not equally attributed to the high gradients of the region. The local relief, calculated by subtrating the minimum elevation from maximum elevation within a 5 km radius, of the Korean Peninsula is between 0 and 968 m, with an average of 226 m. Most of the peninsula demonstrates less than 100 m relief, accounting for 96% of the total. Regions with relief of more than 500 m only constitute 3% and are distributed along the peaks of Hwanghaegun, Namwon, Taebaek, Taebaek, and Sanmaek. When separated by 100 m relief intervals, 60% of the area consists of 0–100 m relief, representing the largest proportion of the area distribution, regions between 900–1,000 m in relief account for only 1%.
Changes in the Recognition of Landforms

Historical Map (Daedong yeojido)

- Historical maps of Korea are mostly from the Joseon Dynasty. The first known map of Korea, the Penglou Map, was created by Li Yanying in the 13th century. The Daedong yeojido, completed in 1413, is the most famous historical map of Korea.
- The map provides a sense of unity and continuity that mountain systems are interconnected just as rivers are continuous. These maps specifically sizing that mountain systems are interconnected just like the mountain ranges are interconnected.

Distribution of Royal Tombs (Part of Daegyojeon)

- The traditional geographical thought of Korea is portrayed in mountain ridge maps, which use lines to express the hierarchical relationship of major mountains. A representative mountain ridge map is the Daegyojeon map, which was published in Sungjonggye and Hunjong 1 (Dragon 1). A significant and 15th century.
- Mountain ridge maps help us visualize the geographical reality of the Korean Peninsular by emphasizing that mountain systems are interconnected just as rivers are continuous. These maps specifically demonstrate high peaks and mountain ridges, recognizing their importance as connecting passages between living spheres and ridges. Even without modern scientific explanations of geological structures, terrain formation, and landscape changes, traditional geography emphasized watershed systems, which are strictly designed according to Pungsu principles. Most tombs are located in hundred grids and mountains with thick (rock) layers.

Mountain Chain (Chagyeong and Jeongmaek)

- Mountain chain maps help us visualize the geographical reality of the Korean Peninsular by emphasizing that mountain systems are interconnected just as rivers are continuous. These maps specifically demonstrate high peaks and mountain ridges, recognizing their importance as connecting passages between living spheres and ridges. Even without modern scientific explanations of geological structures, terrain formation, and landscape changes, traditional geography emphasized watershed systems, which are strictly designed according to Pungsu principles. Most tombs are located in hundred grids and mountains with thick (rock) layers.
In late Joseon, modern topographic maps were introduced into the nation and continued with traditional maps. Modern topographic maps can be traced to the Korean Empire Period with the publication of various maps in 1899. This map was the nation’s first attempt to utilize latitude and longitude in a coordinate system. Efforts to make cadastral maps and topographic maps based on land surveys in 1899 were followed by the Japanese occupation. From 1914, the Japanese Government-Era of Korea made 2,513,900-scale topographic maps of the whole Korean territory and 763 1:25,000 scale topographic maps of major urban regions for land utilization and military purposes.

After the independence, the democratic Korean government formally established in August 1948, and the surveying teams from the Korean Army Headquarters were in charge of mapping. In 1950, the Ministry of National Defense established the National Geographic Research Institute, the first formal mapmaking governmental organization. From 1964 to 1966, the institute converted and established under the Ministry of Construction in 1974, and have since then continuously produced 1:5,000 scale topographic maps and 1:25,000 scale thematic maps that include coastal base maps, land use maps, artificial satellite imagery maps, and aerial photo maps.

Automated map production was first introduced in the 1980s. Using data from the National Geographic Information System (NGIS), digital topographic maps at scales of 1:1,000, 1:5,000, and 1:25,000 were being produced by the late 1980s. From 2001, the maps are continuously being updated and advanced. By 2010, the second set of digital topographic maps 2.5B was completed and the fully automated production process of maps at scales of 1:5,000 is further fed into its communication system. New mapping technologies are now being developed with the Korea Mapping System (KMS), aerial photography, and construction drawing.

Korea began its Spatial Development Plan at the end of the 1980s to promote cutting-edge technology. Based on the master plan for long-term national spatial industry development, various initiatives were launched in the 1990s, including the development of artificial satellites. The first artificial satellite, KITSAT-1, was launched on August 11, 1992, successfully drawing public attention and support for the national spatial industry. Satellite imagery is utilized for a wide range of applications, including monitoring natural disasters and underground resource use. Information collected from satellite images serves as basic data for geographic information systems and ultimately contributes to balanced national development. Many facets have benefited from artificial satellites, broadening communication and information services, marine observation, national disaster prevention, and tourism forecasting, all as just some of a continuously expanding range.

Korea confirms its third long-term plan for national spatial development and expects to launch twenty more satellites. It is striving in further developing the spatial industry and leveraging international geopolitical ties to take part in the space station project, and then aims to become a forerunner in the global space industry within the next ten years.

Korea conducts a national ecosystem survey that inspects the comprehensive status of the natural environment. It covers abiotic components (topography, geology, land, and soil) as well as biotic components (plants and animals). This survey enhances the understanding of topological features, the distribution of plant and animal species, the level of environmental destruction, conservation values and so on, by analyzing the characteristics of each individual element.

The national ecosystem survey has three components: first, a comprehensive national environment survey as a basic investigation for the national environment; second, a national survey of key ecological landscapes that include inland wetlands, wind-dried islands, coastal sand dunes, wetlands, and other landscapes of retaining ecological importance; and lastly, a species survey on legally protected, rare, and endangered wild flora and fauna.

This survey is the largest scale of its kind conducted annually in Korea, involving around 508 researchers in various fields including, biologists and geographic groups of plant and animal species. The nation’s very first surveys (1996 to 1998) covered terrestrial, freshwater, and coastal ecosystems and was based on the basic plans for the national ecosystem survey (1980s). The 4th and 5th Landform in 1997 and 2003 has been continuously updated ever since the third surveys (2004 to 2012).

Geomorphological and landscape features are some of the most fundamental components of the natural ecosystems. Topographic features directly influence surface geology, distribution, ground water status, and growth and reproduction of plant and animal species. The national landform survey is composed of two different surveys: one is a general survey of features such as mountains, river landforms, and coastal landforms; the other is a special survey of volcanoes and karst landforms. The results of the topographic survey are compiled into printed lines and polygons based on these data. The first phase surveys have reported that valuable topographic features of the first grade comprise 1,446 points, 228 lines, and 980 polygons in Korea.

The data collected through the national ecosystem survey enhances understanding of the landscape and is foundational to understanding the natural resources potential and the distribution of biodiversity. By incorporating the information into ecological maps, experts such as environmental managers, development planners and government officials may utilize the comprehensive expressions of the survey to understand the distribution of biodiversity, utility development plans, carry out environmental impact evaluations, and conduct natural environment assessments.

Korea conducts a national ecosystem survey that inspects the comprehensive status of the natural environment. It covers abiotic components (topography, geology, land, and soil) as well as biotic components (plants and animals). This survey enhances the understanding of topological features, the distribution of plant and animal species, the level of environmental destruction, conservation values and so on, by analyzing the characteristics of each individual element.

The national ecosystem survey has three components: first, a comprehensive national environment survey as a basic investigation for the national environment; second, a national survey of key ecological landscapes that include inland wetlands, wind-dried islands, coastal sand dunes, wetlands, and other landscapes of retaining ecological importance; and lastly, a species survey on legally protected, rare, and endangered wild flora and fauna.

This survey is the largest scale of its kind conducted annually in Korea, involving around 508 researchers in various fields including, biologists and geographic groups of plant and animal species. The nation’s very first surveys (1996 to 1998) covered terrestrial, freshwater, and coastal ecosystems and was based on the basic plans for the national ecosystem survey (1980s). The 4th and 5th Landform in 1997 and 2003 has been continuously updated ever since the third surveys (2004 to 2012).

Geomorphological and landscape features are some of the most fundamental components of the natural ecosystems. Topographic features directly influence surface geology, distribution, ground water status, and growth and reproduction of plant and animal species. The national landform survey is composed of two different surveys: one is a general survey of features such as mountains, river landforms, and coastal landforms; the other is a special survey of volcanoes and karst landforms. The results of the topographic survey are compiled into printed lines and polygons based on these data. The first phase surveys have reported that valuable topographic features of the first grade comprise 1,446 points, 228 lines, and 980 polygons in Korea.

The data collected through the national ecosystem survey enhances understanding of the landscape and is foundational to understanding the natural resources potential and the distribution of biodiversity. By incorporating the information into ecological maps, experts such as environmental managers, development planners and government officials may utilize the comprehensive expressions of the survey to understand the distribution of biodiversity, utility development plans, carry out environmental impact evaluations, and conduct natural environment assessments.

Korea conducts a national ecosystem survey that inspects the comprehensive status of the natural environment. It covers abiotic components (topography, geology, land, and soil) as well as biotic components (plants and animals). This survey enhances the understanding of topological features, the distribution of plant and animal species, the level of environmental destruction, conservation values and so on, by analyzing the characteristics of each individual element.

The national ecosystem survey has three components: first, a comprehensive national environment survey as a basic investigation for the national environment; second, a national survey of key ecological landscapes that include inland wetlands, wind-dried islands, coastal sand dunes, wetlands, and other landscapes of retaining ecological importance; and lastly, a species survey on legally protected, rare, and endangered wild flora and fauna.

This survey is the largest scale of its kind conducted annually in Korea, involving around 508 researchers in various fields including, biologists and geographic groups of plant and animal species. The nation’s very first surveys (1996 to 1998) covered terrestrial, freshwater, and coastal ecosystems and was based on the basic plans for the national ecosystem survey (1980s). The 4th and 5th Landform in 1997 and 2003 has been continuously updated ever since the third surveys (2004 to 2012).

Geomorphological and landscape features are some of the most fundamental components of the natural ecosystems. Topographic features directly influence surface geology, distribution, ground water status, and growth and reproduction of plant and animal species. The national landform survey is composed of two different surveys: one is a general survey of features such as mountains, river landforms, and coastal landforms; the other is a special survey of volcanoes and karst landforms. The results of the topographic survey are compiled into printed lines and polygons based on these data. The first phase surveys have reported that valuable topographic features of the first grade comprise 1,446 points, 228 lines, and 980 polygons in Korea.

The data collected through the national ecosystem survey enhances understanding of the landscape and is foundational to understanding the natural resources potential and the distribution of biodiversity. By incorporating the information into ecological maps, experts such as environmental managers, development planners and government officials may utilize the comprehensive expressions of the survey to understand the distribution of biodiversity, utility development plans, carry out environmental impact evaluations, and conduct natural environment assessments.
Although approximately 70% of Korea's territory consists of mountains, there are not many mountains with high elevations. The highest peak in South Korea (excluding Hallasan in Jeju Island) is Jirisan, which stands less than 2,000 m. The higher mountains are distributed toward the eastern side, a phenomenon that can be explained by the asymmetrical warping of the Korean Peninsula. In Korea, many of these regions have become tourist destinations as the exposure of bedrock creates a unique landscape. As a result, the most notable examples of river topography within the nation are the natural levees and backswamps of these floodplains developed from the last glacial period; eroded valleys were filled with sediments due to rising sea levels. Deltas, which are an extension of floodplains, are shaped by sediment discharge of rivers, ocean tides, and waves. They are generally located where the mouth of a river meets the sea. The Nakdonggang delta is a representative example. Alluvial fans are formed from small rivers and are mainly used for agriculture. Most eroded stream topography is observed in upstream areas of large rivers or around smaller rivers.
First-grade coastal landforms are closely distributed along the coastlines, mainly around relatively less-developed islands. Korean coastal landforms can be classified as rocky, sandy, or muddy. Sandy coasts are observed in bays where active sedimentation by waves occurs. Coastal depositional landforms include beaches, sand dunes, and swales. Rocky coasts are indicative of erosional topography and develop along the headlands of mountainous and mound regions near the sea. Coastal landforms include sea cliffs, wave-cut platforms, and coastal terraces. These landforms are often seen along the eastern and western coasts, especially along regions with high wave activity. Rocky coasts are also visible along the continental shelf, where some cliffs reach depths of several meters. Rocky coasts are typically found in areas with high wave activity, such as the northern and western coasts of Korea, where the sea is deeper and waves are stronger.

Although Korea does not currently have active volcanoes, various volcanic activity occurred throughout the Quaternary period. As a result, distinct volcanic landforms can be observed in Jeju, Jeju-do, and the Cheju-Do Plateau. Jeju, known as the “three-gemstone island,” is home to 77 active volcanic vents and more than 300 lava flows. The island is characterized by its volcanic geology and contains a variety of volcanic landforms, including volcanic cones, craters, and lakes. The island is home to the Jeju Volcanic Group, which includes the packages of volcanic strata, volcanic features, and volcanic ash.

Korean Volcanic Islands

- **Primeval Jejudo (1.6–0.6 Ma)**
 - The formation of the earliest volcanic activity in Jejudo, forming the basic foundation of the island.
- **Formation of the Bottom of Jejudo (2.2–2.4 Ma)**
 - The formation of the volcanic basement on the bottom of the island.
- **Formation of Volcanic Islets (Jejudo)**
 - The formation of volcanic islets, which are small volcanic peaks or mounds.
- **Formation of Volcanic Islands (Jejudo)**
 - The formation of volcanic islands, which are larger volcanic peaks or mounds.
- **Development of Volcanic Islands (Jejudo)**
 - The development of volcanic islands over time, leading to the formation of the current landscape.

Korean Volcanic Rocks

- **Limestone and Volcanic Rocks**
 - The formation of limestone and volcanic rocks, which are composed of different minerals and are formed through various geological processes.
- **Development of Volcanic Rocks**
 - The development of volcanic rocks, which are formed through the cooling and solidification of magma.
- **Volcanic Cone and Lake (Baegnokdam, Hallasan)**
 - The formation of volcanic cones and lakes, which are formed through the accumulation of volcanic material.
- **Crater Lake (Baegnokdam, Hallasan)**
 - The formation of crater lakes, which are formed through the accumulation of water in a volcanic crater.
- **Lithosphere**
 - The formation of the lithosphere, which is the outermost layer of the Earth and is composed of the crust and upper mantle.
- **Geological Structure**
 - The formation of geological structures, which are formed through the movement of tectonic plates.
- **Erosional Features**
 - The formation of erosional features, which are formed through the weathering and erosion of geological structures.
Since the designation of Seoraksan National Park as the first national park in Korea on December 29, 1967, a total of twenty-seven national parks have been designated and protected. Except for Hallasan National Park, which is managed directly by Jeju Special Self-Governing Province, the National Park Authority (established in 1967) manages all the national parks. The total area of the national parks is 6,493,834 km², of which 3,860,612 km² are land and 2,633,222 km² are sea. Among the twenty-seven national parks, seven are coastal, and one, Oryukdo National Park, is in an island. Tashibeho was the last to be designated as a national park on August 22, 2016.

Since the designation of Mt. Seoraksan as a national park, four more national parks have been designated, one in December 2007 and three in 2011. A total of thirty-one national parks have been designated as of 2016. National parks are protected areas set aside to protect natural ecosystems and cultural landscapes. They also represent diverse ecosystems and possess exceptional natural landscapes such as rivers, mountains, and valleys. Nine areas are currently being designated as national parks.

Other than national parks, various regions have been selected and designated on natural parks in order to protect ecosystems and cultural landscapes. Among these natural parks, some prominent ones include provincial and county parks, as well as ecological landscape conservation areas. Provincial parks are representative areas of natural ecosystems and landscapes in metropolitan cities and provinces. As of 2010, there are eighty provincial parks (total area 1,158,320 km²) that have been designated. County parks are representatives of local districts (si and gun) with a total of twenty-two (total area 1,139,074 km²) currently being designated. Such natural parks increase the value of the natural ecosystems and thereby provide the local community with opportunities for regional development. Lately, provincial and county parks are increasing in area as provincial municipalities are attempting to promote regional development and tourism.

National Ecological Landscape Conservation Areas are chosen and managed based on their geological-geomorphological values, vegetational importance, ecological characteristics, or necessity for conservation. These areas possess significant values in conservation and scholarly research of natural ecosystems. They possess distinct geological or topographical characteristics that are preserved for research and scenic outcomes. They also represent diverse ecosystems and possess exceptional natural landscapes such as cliffs, mountains, and valleys. New areas are currently designated and protected across the country.
Among Korea’s 5,687 islands, all accessible and large islands are occupied by residents, while 2,479 small, remote islands remain uninhabited. Uninhabited islands are important to national territory and security, as they are crucial defense bases for national boundaries and exclusive economic zones. Even from an ecological or environmental perspective, uninhabited islands are protected from human disturbance, so their conservation status is higher than that of inhabited islands. From an academic point of view, uninhabited islands have special geologic, morphologic, landscape, and ecosystem features that provide opportunities to investigate changes in climate, land surface features, and our levels. Also, uninhabited islands are more affected by ocean currents and sea waves, thus providing various abiotic factors that are critical in understanding ecosystem processes. Ecological landforms such as wave-cut platforms, sea cliffs, sea caves, sea arches, sea stacks, and windows are dominantly located where the rocky coasts of uninhabited islands meet the open sea. By contrast, islands located in coastal waters often house various habitats.

Under the Act on the Conservation and Management of Uninhabited Islands established in 1987, conservation efforts have been carried out for uninhabited islands with particular landscape value or ecological importance. As of 2016, 137 islands have been recognized, of which 229 are explored as special islands for conservation. These special islands are mainly located in Jeju-do, Jeollanam-do, Gyeongsangnam-do, and Gyeongsangbuk-do, as rainforests are very prominent in these regions.

Islands Statistics

<table>
<thead>
<tr>
<th>Islands</th>
<th>Characteristics</th>
<th>Number of Islands</th>
<th>Ramsar Enlisted Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gangwon-do Daeamsan Yongneup Swamp, Changnyeong Uponeup Swamp, Ondonggok Wetland</td>
<td>Natural habitat for variety of species</td>
<td>2,675</td>
<td>2004/02/20</td>
</tr>
<tr>
<td>Jeju 1100 Goji Wetland, Jeju Sumeunmulbaengdui</td>
<td>Well preserved nature with rich fish resources</td>
<td>76</td>
<td>2006/12/15</td>
</tr>
<tr>
<td>Shinbulsan Alpine Wetland</td>
<td>Excellent landscape with rich biodiversity/Habitat for migratory birds</td>
<td>482</td>
<td>2006/01/20</td>
</tr>
<tr>
<td>International Geoparks</td>
<td>Rich variety of species/Habitat for rare and endangered species</td>
<td>3,827</td>
<td>2006/12/28</td>
</tr>
<tr>
<td>National Geoparks</td>
<td>Well preserved nature and habitat of oyster catcher</td>
<td>4,912</td>
<td>2007/12/20</td>
</tr>
<tr>
<td>National Geoparks (Geological Attractions: 24)</td>
<td>Unique volcanic landforms</td>
<td>767</td>
<td>1999/08/09</td>
</tr>
</tbody>
</table>

National Geoparks

In Jeju-do, Gyeongsangbuk-do, and Geoje Island, national geoparks are established. Geoparks are areas designated by the Ministry of Environment to be a “museum of volcanoes” as it boasts a variety of unique volcanic landforms. There are 304 islands commonly termed islands above the surface and about 50 islands that are covered under tidal cycles. It is a rare phenomenon to see so many islands and underground rocks on a single island.

- Ulleungdo and Dokdo are volcanic islands that provide essential clues explaining the formation of the Korean seas. They are very important in various research fields including geology, biology, geomorphology, and botany. Scenic spots (90-120 km²) on the highest peak of Ulleungdo is located at the center of the island. Ulleungdo also has the best view, formed by a depressed volcano, and small peaks called Ilbingdo. Some other geologic features of Ulleungdo and Dokdo include Dropping and Landing Beach that have well-developed sea cliffs and recessed platforms, Gordon Rock with its volciclastic joints, Dragonbari, Elephant Rock, Turtle Rock, Donggul Waterfall, Sogeumgok Primitive Forest, and Mungok Beaches. There are a total of 23 geosites on these two islands.

- Jeju has a variety of diverse landscape features such as coasts, mountains, and estuaries, and has a wealth of cultural assets. Nebulur estuary, Sambong-Punsan, Taepyeong-Do, Oryukdo, Cheongsando, and Goseong-geo are some of the 115 geosites in Jeju.

- Geoparks in Geoje Island were designated in order to transform the areas around the DMZ into a symbol of Cold War hostility to a symbol of peace. It contains a rich geological and geomorphological heritage, and spans across Cheorwon, Hwacheon, Goseong, and Gangwon-gun. There are a total of 21 geosites, including the Cheonmu Lorae Puktu, Hamheon Stein (Punch Bowl), Pohang Tandok, Cheonsa-ri, and Gangwon Lagoon.

- Chongmung Geopark is famous for its magnificent landscape and plenty of historical, cultural, ecological, and archaeological heritage sites. Among 24 geoparks, major locations include Tongyeong Waterfall, Jangseong Waterfall, Yangyang Waterfall, Dodong Waterfall, Cheongun-myeon, and Chongmung to Valley. Many special places are situated in Gyeongju, Jeongcheon, and Jeongcheon-myeon. It has 21 geosites on the Seosokdo Seosokdo, and the Sosong-don Seosokdo, and 22 cultural heritage sites such as Jeongeup, Chirunghi, and Ulleungdo.

- Jeongmung Geopark includes Jeongmu Waterfall and Dusang Rock of the Munseon-ri. Sogeumgok Mungok-ri, Dongsan-ri, and Jeongmung-myeon. Dosa-ri, Jeongmung-myeon, Cheongneungri, Jeongmung-myeon, and Chongmung-myeon. It has 20 geosites overall and has a total area of 767 km².